Voyage: A Journey through our Solar System

Grades 3-4

Lesson 3: Voyage Through the Solar System

On October 17, 2001, a one to ten billion scale model of the Solar System was permanently installed on the National Mall in Washington, DC. The Voyage exhibition stretches nearly half a mile from the National Air and Space Museum to the Smithsonian’s Castle Building. Voyage is a celebration of what we know of Earth’s place in space and our ability to explore beyond the confines of this tiny world. It is a celebration worthy of the National Mall. Take the Voyage at www.voyageonline.org, and consider a Voyage exhibition for permanent installation in your own community.

This lesson is one of many grade K-12 lessons developed to bring the Voyage experience to classrooms across the nation through the Journey through the Universe program. Journey through the Universe takes entire communities to the space frontier.

Voyage and Journey through the Universe are programs of the National Center for Earth and Space Science Education, Universities Space Research Association (www.usra.edu). The Voyager Exhibition on the National Mall was developed by Challenger Center for Space Science Education, the Smithsonian Institution, and NASA.

Copyright June 2006
Lesson 3: Voyage Through the Solar System

Lesson at a Glance

Lesson Overview
Students will build the Voyage scale model of the Solar System on a playground and “travel” to each planet. This experience allows students to recognize that the Sun and planets are tiny worlds in a vast space, giving them a new perspective on the Solar System, and allowing them to gain a new sense of home.

Lesson Duration
One 45-minute class period

Core Education Standards

National Science Education Standards
Standard D2: Objects in the sky
◗ The Sun, Moon, stars, clouds, birds, and airplanes all have properties, locations, and movements that can be observed and described.

AAAS Benchmarks for Science Literacy
Benchmark 4A4:
◗ The Earth is one of several planets that orbit the Sun, and the Moon orbits around the Earth.

Benchmark 11B2:
◗ Geometric figures, number sequences, graphs, diagrams, sketches, number lines, maps, and stories can be used to represent objects, events, and processes in the real world, although such representations can never be exact in every detail.
** Related Education Standards **

AAAS Benchmarks for Science Literacy

Benchmark 9C6:
- Scale drawings show shapes and compare locations of things very different in size.

** Essential Question **

- While we explore places far away from Earth, what do we learn about our home planet and ourselves?

** Concepts **

Students will learn the following concepts:
- The Earth is only a small component of the Solar System.
- The Sun and the planets are tiny worlds in a vast amount of space.

** Objectives **

Students will be able to do the following:
- Measure, construct, and travel the *Voyage* scale model of the Solar System.
- Discuss insights they have gained about Earth, other planets, cycles, and space.
Science Overview

Voyage is a 1 to 10-billion scale model of the Solar System that was permanently installed in Washington, DC, in October 2001. The real Solar System is exactly 10 billion times larger than the Voyage model. On this scale the Sun is about the size of a large grapefruit. The Earth is 15 meters (50 feet) away and smaller than the head of a pin. The entire orbit of the Moon fits comfortably in the palm of your hand. Pluto, the farthest planet, is approximately 600 meters (2,000 feet or 6.5 football fields) away from the Sun. The nearest star to the Sun would be the size of a cherry located in coastal California.

You are going to use the Voyage model in this lesson. The student worksheets have graphical representations of the Sun and planets at the scale of Voyage.

We are going to set up the Voyage Scale Model Solar System with the planets all in a row. This will allow students to see the relative distances from the Sun to each planet. However, in the real Solar System, the planets never line up as they orbit the Sun.

The chart on this page allows you to start at the Sun, and provides the number of paces to walk from planet to planet. The second chart provides a running total of the number of meters from the Sun.

In this activity a “pace” is equal to one (1) meter. Have students practice how to walk a one meter-long pace. (See Preparation & Procedures.)

<table>
<thead>
<tr>
<th>Chart of Paces Between Model Planets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun to Mercury</td>
</tr>
<tr>
<td>6 paces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chart of Total Distances (Meters) from Model Sun to Each Model Planet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
</tr>
<tr>
<td>6 meters</td>
</tr>
</tbody>
</table>
Notes:

Voyage Through the Solar System

Lesson at a Glance

Science Overview

Conducting the Lesson

Resources
Conducting the Lesson

Warm-Up & Pre-Assessment

Preparation & Procedures
Tell the students you have models of the nine planets that are one ten-billionth their actual size. Ask for student volunteers to estimate how far apart the planets need to be placed to accurately represent the distance between them.
Activity: Voyage Through the Solar System

In this activity, students travel to each planet on the Voyage scale model Solar System.

Teacher Materials
- A meter stick
- Teacher Fact Sheet with model Sun and planets
- 10 pieces of cardboard or 10 posterboards (about 24” x 36”) brightly colored, if possible
- Thick-edged black magic marker
- 10 wooden dowels or sticks about 3’ long and the thickness of a pencil or thicker. They need to be strong enough to be pushed into the ground
- Roll of wide masking tape or packing tape
- Long, flat playground. A sidewalk is also appropriate if the dowels can be pushed into the dirt adjacent to the sidewalk

Student Materials
- One copy of the Student Worksheet per student

Preparation & Procedures
1. Find an outdoor site for setting up the Voyage model. Make sure it is clear and flat.

2. Sharpen dowels so that they can be pushed into the ground.

3. Label one posterboard, “Sun,” with the name filling the whole board so that it can be seen from a distance. Make sure the lettering is thick. Label each of the remaining nine posterboards for each of the remaining planets. Tape the model Sun and planets to the appropriate posterboards and tape the posterboard to the dowels.

Teaching Tip
Because of the great distances between the model planets, you may choose to pace out only from the Sun to Mars or Jupiter (which can be done inside, down a long school hallway). You may want to lay out markers for the rest of the planets along the street in front of the school, so that children walking home or riding the bus can see the positions of all the planets in the Solar System.
4. In this lesson a “pace” is two steps. Before taking the students outside, show them how to make a “pace” of one meter length. You can put a few tape strips on the floor one meter apart and have students practice walking one pace (or two steps) per meter.

5. Ask the students how they could model the Solar System distances. Assign a different student to hold the Sun and each of the planet signs.

6. Take the class outside with the planet signs and ensure each student has a copy of the pacing chart.

7. Outside, push the Sun sign into the ground.

8. A student calls out the number of paces from the Sun to the first planet (Mercury).

9. At least two students (one holding Mercury) march out the distance and push the stick into the ground. (It is better to have at least two students pace out the steps, to ensure some consistency.)

10. Repeat for each of the remaining planets, placing them in a straight line for as far as you can (even though the planets never line up in a straight line in the real world).

11. As you arrive at each of the planets, you might want to tell students a fun fact about it. These can be found on the Teacher Fact Sheet.

12. Have the students walk to different planets and see if they can still see the Earth or the Sun from each new location.

13. Have the students make other generalizations about what they have observed, noting their comments in their notebooks for later use.
Reflection & Discussion
Setting up a scale model of the Solar System almost always surprises students when they see how small the Sun and planets are compared to the distances between them. Explore this with the class. Use these questions to prompt further discussion:

- How did the distances between the planets in the inner Solar System (out to Mars) compare to the distances between planets in the outer Solar System?
- Where do you find rocky (terrestrial) planets? (Close to the Sun.)
- Where do you find the gas giant (Jovian) planets? (Far from the Sun.)

Transfer of Knowledge
The Sun, our star, has a family of planets called the Solar System. What about all the stars in the sky? Could they also have their own families of planets? (Yes, since 1995 scientists have...
Lesson Adaptations

Special Education:
- Ask students to make a generalization about the sizes of the inner and outer planets.
- Have students use miscellaneous boxes, fabrics, buttons, old toys, action figures, and other craft materials to construct a fantasy world for two or three characters. Have the students also create a daily schedule for the characters, taking into account the imaginary length of day, month, and year for the fantasy world in which they live.

Talented and Gifted:
- Remind students that the nearest star to the Sun is much further away than the farthest planet in our neighborhood, and that each star has a neighborhood of its own. Ask them to imagine where that closest star might be on their model of Voyage. (If the Sun were the size of a grapefruit located on the East coast of the U.S., Proxima Centuri would be the size of a cherry located on the West coast).
- Ask students to make a scale model of a place other than the Solar System. It can be a real place such as the Grand Canyon or the Milky Way Galaxy. It can be an imaginary place such as Peter Pan’s Never-Never Land or some place they imagined in a dream.
discovered dozens of solar systems around other stars similar to the Sun.)

Assessment Criteria for Activity

Grades 3-4 students may be evaluated as follows. They need not demonstrate all the characteristics of a category to fall within it, though strong evidence of their classification by the teacher should be provided.

4 Points
- Clearly and consistently demonstrates a sophisticated understanding of the concepts nearly 100% of the time by applying them accurately in activities, questions, comments, work, and projects both in the classroom and elsewhere.

3 Points
- Shows a nearly complete grasp of the concepts by using them appropriately at least 75% of the time in class, asking pertinent questions, and by making viable attempts at applying the concepts to other aspects of learning.

2 Points
- Responds correctly to direct questions regarding the meaning of the concepts, but cannot yet express them or demonstrate them consistently and accurately; still makes errors about 50% of the time.

1 Point
- Indicates little more than random guessing at understanding the concepts; cannot focus on essential elements or regularly respond correctly to leading questions; less than 50% accurate.

0 Points
- No work completed.

Placing the Activity Within the Lesson

Discuss with students how, by traveling to each planet, they can gain an appreciation for the vastness of the Solar System, and how Earth is only a small component. The Sun and the planets are truly tiny worlds in a vast amount of space.
Lesson Wrap-Up

Lesson Closure
Earth, our home, is just one of nine planets orbiting the Sun. The Sun is one of countless stars, some of which you see in the night sky. Maybe around one of those stars is a planet which is home to a class of students. If they look into their night sky, they might be looking at you!

Notes:
Resources

Internet Resources & References

Student-Friendly Web Sites:
Astronomy for Kids
 www.astronomy.com/content/static/AstroForKids/default.asp
Kids Astronomy
 www.kidsastronomy.com/solar_system.htm
NASA Kids
 kids.msfc.nasa.gov/SolarSystem/
NASA’s Planetary Photojournal
 photojournal.jpl.nasa.gov/

Teacher-Oriented Web Sites:
American Association for the Advancement of Science, Project 2061
 Benchmarks
 www.project2061.org/tools/benchol/bolintro.htm
Exploring Planets in the Classroom
 www.spacegrant.hawaii.edu/class Acts/
National Science Education Standards
 www.nap.edu/html/n ses/
The Nine Planets
 www.nineplanets.org/
Voyage Online
 www.voyageonline.org/

Other Resources
Glaser, Linda. Our Big Home: An Earth Poem
Leedy, Loreen. Postcards from Pluto: A Tour of Our Solar System
Mitton, Tony. Roaring Rockets
Moore, Patrick. The Planets
Nayer, Judy, et al. Space at your Fingertips
Rabe, Tish. There’s No Place Like Space! A Dr. Seuss book
Teacher Fact Sheet

IMPORTANT NOTE: Your printer may not have produced the planets on these worksheets at their correct size. To check and correct, adjust the enlargement/reduction on your printer to ensure that this ruler measures exactly 10 cm long.
IMPORTANT NOTE: Your printer may not have produced the planets on these worksheets at their correct size. To check and correct, adjust the enlargement/reduction on your printer to ensure that this ruler measures exactly 10 cm long.
Fun Facts About the Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Fact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>18 Mercuries would fit inside the Earth.</td>
</tr>
<tr>
<td>Venus</td>
<td>Venus is always cloudy.</td>
</tr>
<tr>
<td>Earth</td>
<td>Earth is the only planet we know with life.</td>
</tr>
<tr>
<td>Mars</td>
<td>Mars is red because it is covered with rust.</td>
</tr>
<tr>
<td>Jupiter</td>
<td>A storm (hurricane) on Jupiter can swallow two Earths.</td>
</tr>
<tr>
<td>Saturn</td>
<td>Each season on Saturn is more than seven years long.</td>
</tr>
<tr>
<td>Uranus</td>
<td>By the time you get to Uranus, you are only halfway to Pluto.</td>
</tr>
<tr>
<td>Neptune</td>
<td>Neptune is the windiest planet, with winds blowing over 1,000 miles-per-hour.</td>
</tr>
<tr>
<td>Pluto</td>
<td>Pluto is a ball of ice and rock.</td>
</tr>
</tbody>
</table>

Chart of Paces Between Model Planets

<table>
<thead>
<tr>
<th>From Planets</th>
<th>Sun to Mercury</th>
<th>Mercury to Venus</th>
<th>Venus to Earth</th>
<th>Earth to Mars</th>
<th>Mars to Jupiter</th>
<th>Jupiter to Saturn</th>
<th>Saturn to Uranus</th>
<th>Uranus to Neptune</th>
<th>Neptune to Pluto</th>
</tr>
</thead>
<tbody>
<tr>
<td>的距离 (pace)</td>
<td>6 paces</td>
<td>5 paces</td>
<td>4 paces</td>
<td>8 paces</td>
<td>55 paces</td>
<td>65 paces</td>
<td>144 paces</td>
<td>163 paces</td>
<td>142 paces</td>
</tr>
</tbody>
</table>

Chart of Total Distances (Meters) from Model Sun to Each Model Planet

<table>
<thead>
<tr>
<th>Planet</th>
<th>Mercury to Sun</th>
<th>Venus to Sun</th>
<th>Earth to Sun</th>
<th>Mars to Sun</th>
<th>Jupiter to Sun</th>
<th>Saturn to Sun</th>
<th>Uranus to Sun</th>
<th>Neptune to Sun</th>
<th>Pluto to Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>距离 (meter)</td>
<td>6 meters</td>
<td>11 meters</td>
<td>15 meters</td>
<td>23 meters</td>
<td>78 meters</td>
<td>143 meters</td>
<td>287 meters</td>
<td>450 meters</td>
<td>592 meters</td>
</tr>
</tbody>
</table>